

Convective Heat Loss:

A Critical Analysis of Conventional Rainscreen Design

Conventional Rainscreen Design

Building Enclosure Science & Technology

New Design Considerations

New Design Considerations

Heat Transfer

- Thermal Bridging
- Convective Heat Loss

Moisture Transport

- Rainscreen-WRB Disjoined
- Reduced Drainage Efficiency
- Reduced Vapor Transport with Low-Perm WRBs

The Rainscreen Paradox

Minimize Heat Transfer....

Maximize Moisture Transport

General Approach

Using Building Simulations to Assess Risks

Computational Fluid Dynamics: COMSOL

- Rainscreen Airflows in Whole Buildings
- Convective Heat Loss in Decoupled Walls

H.A.M. Transfer: COMSOL + WUFI

- Steady-State CFD with 3D Models
- Steady-State & Transient 1D (WUFI)

The Challenge:

Simultaneously assess heat, air, and moisture transport thru porous media.

Inlet = 6.7 m/s (15 mph) Winter Design Conditions ASHRAE Handbook

Building Enclosure Science & Technology

At Grade

Mid-Height

m/s

Exterior Building Surfaces

Velocity Magnitudes & Flow Patterns

Exterior Building Surfaces

Surface Pressures

Ventilation Inlets

Cladding Attachment System

Complex Model Geometries

Ventilation Inlets

Top of Wall

Base of Wall

Windward Wall

Rainscreen Velocities: 0.1 to >3 m/s

Rainscreen Velocities: 0.1 to >3 m/s

Plan View

Ventilation Inlets: Velocity

Ventilation Inlets: Pressure

Ventilation Inlets

Airflow velocities are 2x – 5x greater than expected.

Governing Factors:

- Rainscreen Geometry
- Inlet Configuration
- Wind Speed
- Rainscreen Cavity Depth

Building Enclosure Science & Technology

Convective Heat Loss

Convective Heat Loss

Horizontal Flows

Vertical Flows

Decoupled

Vertical Flows 1 m/s

Convective Heat Loss

Open Pore Fibrous

Permeable *Permeability is density-dependent* **Closed Pore Cellular Foams** Impermeable at encountered pressures

Effective R-Values: 1 m/s

Building Enclosure Science & Technology

Effective R-Values: 2 m/s

Inlet Velocity: 1 m/s

Velocity

Inlet Velocity: 1 m/s

2x10⁻¹⁰ m² Density ~160 kg/m³ Density ~10 lb/ft³ 8x10⁻¹⁰ m² Density ~70 kg/m³ Density ~4.4 lb/ft³ 2x10⁻⁹ m² Density ~30 kg/m³ Density ~1.9 lb/ft³

Inlet Velocity: 2 m/s

Velocity

Inlet Velocity: 2 m/s

2x10⁻¹⁰ m² Density ~160 kg/m³ Density ~10 lb/ft³

8x10⁻¹⁰ m² Density ~70 kg/m³ Density ~4.4 lb/ft³

2x10⁻⁹ m² Density ~30 kg/m³ Density ~1.9 lb/ft³

CE

Building Enclosure Science & Technology

Inlet Velocity: 2 m/s

Open Pore / Fibrous Insulation (2 m/s; Density ~70 kg/m³)

°F

×10⁻³

m/s

60

50

40

30

20

Convective Mechanisms

Building Enclosure Science & Technology

Insulation Gaps

Effective R-Values

Open Pore Fibrous Insulation

Effective R-Values

Closed Pore Cellular Insulation

Effective R-Values

°C

Building Enclosure Science & Technology

Building Enclosure Science & Technology

Interior: 40% RH; 70°F

Exterior: 80% RH; 0°F or 30°F

Building Enclosure Science & Technology

Interior: 40% RH; 70°F

Exterior: 80% RH; 30°F

ultiling Enclosure Science & Technology

Interior: 40% RH; 70°F

Exterior: 80% RH; 0°F

Interior: 40% RH; 70°F

Exterior: 80% RH; 0°F

Flow = 1 m/s

1) Increase Flow or Indoor RH; or 2) Decrease Temperature or Insulation Density

1) Further Increase Flow or Indoor RH; or 2) Further Decrease Temp. or Density

Same Conditions with Solid Insulation

Gaps & Convective Cooling

Gaps & Convective Cooling

Interior: 40% RH; 70°F

Exterior: 80% RH; 30°F Flow = 1 m/s

Gaps & Convective Cooling

Interior: 40% RH; 70°F

Exterior: 80% RH; 0°F Flow =

Flow = 1 m/s

Addressing the Rainscreen Paradox

Smart Rainscreen Geometries

Avoid airflow diversion against insulation surfaces.

Ventilation Openings

Understand inlet areas & prevent airflow against insulation edges.

Product Selection

Use higher density fibrous insulation or cellular insulation.

Gaps

Treat edge gaps. Adhere / securely fasten to prevent back gaps.

Addressing the Rainscreen Paradox

Ventilation Rates

Avoid over-ventilation. Reduce air change rates where possible.

Prescriptive Approaches

Avoid prescriptive minimalistic U-factors. Avoid hybrid approaches.

Low-Perm WRB Avoid low-perm Air / WRBs.

WRB Placement

Move AB / WRB to exterior face of insulation.

Addressing the Rainscreen Paradox

Thank You!

M. Steven Doggett, Ph.D. Principal Scientist, Built Environments, Inc. sdoggett@built-environments.com www.built-environments.com

